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ABSTRACT

The skill of surface temperature forecasts up to 4 weeks ahead is examined for weekly tercile category proba-

bilities constructed using extended logistic regression (ELR) applied to three ensemble prediction systems (EPSs)

from the Subseasonal-to-Seasonal (S2S) project (ECMWF, NCEP, and CMA), which are verified over the com-

mon period 1999–2010 and averaged with equal weighting to form a multimodel ensemble (MME). Over North

America, the resulting forecasts are characterized by good reliability and varying degrees of sharpness. Skill de-

creases after twoweeks and fromwinter to summer.Multimodel ensembling damps negative skill that is present in

individual forecast systems, but overall, does not lead to substantial skill improvement compared to the best

(ECMWF) model. Spatial pattern correction is implemented by projecting the ensemble mean temperatures

neighboring each grid point ontoLaplacian eigenfunctions, and thenusing those amplitudes as newpredictors in the

ELR. Forecasts and skill improve beyond week 2, when the ELR model is trained on spatially averaged tem-

perature (i.e., the amplitude of the first Laplacian eigenfunction) rather than the gridpoint ensemblemean, but not

at shorter leads. Forecasts are degradedwhen addingmore Laplacian eigenfunctions that encode additional spatial

details as predictors, likely due to the short reforecast sample size. Forecast skill variations with ENSO are limited,

but MJO relationships are more pronounced, with the highest skill during MJO phase 3 up to week 3, coinciding

with enhanced forecast probabilities of above-normal temperatures in winter.

1. Introduction

In comparison to seasonal hindcasts (reforecasts),

submonthly hindcasts are often characterized by shorter

length and fewer ensemble members, so a straightfor-

ward computing of probabilities by counting of ensem-

blemembers exceeding a chosen threshold leads to large

errors. In the cases of the 4-member NCEP and CMA

reforecasts archived in the S2S database and used in this

study, for instance, the reforecast probability obtained

by counting can only take the values of 0%, 25%, 50%,

75%, and 100%, which is very crude. Distributional re-

gression is, by contrast, well suited to probability fore-

casting, and regression models are more skillful than

straight counting for small ensemble sizes in the sea-

sonal forecasting context (Tippett et al. 2007). Model

output statistics (MOS) has been shown to improve

probabilistic weather forecasts (Hamill et al. 2004), but

fewer analyses have been yet done at subseasonal time

scales. Submonthly forecasts based on extended logistic

regression (ELR; Wilks 2009) have recently provided

probabilistic precipitation forecast skill estimates on S2S

time scales over different parts of the globe including

North America (Vigaud et al. 2017a,b, 2018), but such

approaches have yet to be applied to surface tempera-

tures. In the ELR methodology proposed in Vigaud

et al. (2017a), calibration is done at the gridpoint level

(i.e., a separate regression model is constructed for ev-

ery location without using information from neighbor-

ing grid points). Since gridpoint regressions are prone to

sampling uncertainties that can translate into spatially

noisy forecasts, there might be potential for improve-

ments by including spatial information. This study thus

aims at providing probabilistic skill estimates for NorthCorresponding author: N. Vigaud, nicolas.vigaud@gmail.com
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American surface temperature terciles from submonthly

reforecasts and examining if these can be improved by

multimodel ensembling and spatial pattern correction.

Multiple linear regressions like principal component

regressions (PCR; Mo and Straus 2002) or canonical

correlation analysis (CCA; Barnston and Ropelewski

1992), are well suited for MOS and the treatment of

systematic errors in the positions and amplitudes of

patterns in dynamical model seasonal predictions (Ward

and Navarra 1997; Rukhovets et al. 1998; Smith and

Livezey 1999; Feddersen et al. 1999; Tippett et al. 2003;

Barnston and Tippett 2017). However, converting linear

regression forecasts into probability forecasts usually

requires a Gaussian assumption that may be less ap-

propriate at subseasonal time scales. The pattern-based

MOSmethod often used empirical orthogonal functions

(EOFs), which again depend on the data used to develop

them, and hence vary by model. By contrast, Laplacian

eigenfunction decomposition, which has been recently

applied to climate analysis (Saito 2008; DelSole and

Tippett 2015), makes no assumption on the distribution

of the data and is well suited for multimodel studies

because Laplacian eigenfunctions are uniformly de-

fined across models (DelSole and Tippett 2015). The

Laplacian eigenfunctions are ordered by length scale

from longest to shortest, and thus represent an attractive

approach for filtering out small-scale variability and

summarizing spatial information. The skill of weekly

temperature tercile probability forecasts is first exam-

ined by applying ELR at each grid point to each indi-

vidual models’ forecasts separately. The probabilities of

the individual models are averaged with equal weighting

to form amultimodel ensemble (MME) forecast. Spatial

pattern correction is applied through the decomposition

of ensemble mean temperature neighboring each grid

point using locally defined Laplacian eigenfunctions.

The methods and data are presented in section 2. The

skill of weekly forecasts initialized during DJF (winter)

and JJA (summer) are examined over North America in

section 3. Improvements to skill through spatial pattern

correction based on Laplacian eigenfunctions are then dis-

cussed with skill relationships to ENSO conditions andMJO

phases. Summary and conclusions are gathered in section 4.

2. Data and methods

a. Observation and model datasets

Week-1 through week-4 [i.e., from (d 1 1; d 1 7) to

(d 1 22; d 1 28) targets for a forecast on day d] daily

surface temperatures from the European Centre for

Medium-Range Weather Forecasts (ECMWF), National

Centers for Environmental Prediction (NCEP), and the

China Meteorological Administration (CMA) were all

acquired from the S2S database (Vitart et al. 2017) as in

Vigaud et al. (2017a), which the following data description

parallels in this paragraph. As shown in Table 1, these

EPSs have differing resolutions, ensemble size, and refore-

casts lengths. The common factor in the S2S database is

that they are all archived on the same 1.58 grid. ECMWF

is the only model with reforecasts (11 members) gener-

ated twice a week (Mondays and Thursdays) on the fly.

TABLE 1. Attributes from ECMWF, NCEP, and CMA forecasts

archived in the S2S database at ECMWF.

Attributes ECMWF NCEP CMA

Time range d0–46 d0–44 d0–60

Resolution Tco639/319 L91 T126L64 T106L40

Ensemble size 51 16 4

Frequency 2 per week Daily Daily

Reforecasts (RFC) On the fly Fix Fix

RFC length Past 20yrs 1999–2010 1994–2014

RFC frequency 2 per week Daily Daily

RFC size 11 4 4

FIG. 1. First three Laplacians at 458N, 908W computed on a geographical box of 15 grid points in latitude and longitude.
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NCEP and CMA reforecasts are generated 4 times daily

from the same fixed version of their respective models.

Weekly surface temperature averages from ECMWF re-

forecasts generated for Thusday starts in 2016 (comprising

model cycles CY41R1, CY41R2, and CY43R1) are used

alongside corresponding NCEP and CMA 4-member daily

reforecasts, all available from 1999 to 2010, which is the

period used in our study. There are thus 132 forecasts for

December–February (DJF) and 144 for June–August (JJA)

for eachmodel (12 starts over 11 and 12 years, respectively).

These three EPS are chosen among other S2S models be-

cause their archived reforecasts allow to design amultimodel

ensemble based on exactly the same issuance dates across

models, similarly to the probabilistic skill analysis of pre-

cipitation forecasts from Vigaud et al. (2017a), based on the

same three models subset. Since unequal weighting is not

significantly better than equal weighting in low sample

size and low skill cases (DelSole et al. 2013) such as for

submonthly reforecasts, forecasted probabilities from the

individual models are averaged to form MME tempera-

ture tercile forecasts, whose skill is assessed over North

America for winter (DJF) and summer (JJA) starts.

NOAA CPC Global Historical Climatology Network

(GHCN) Climate Anomaly Monitoring System (CAMS)

FIG. 2. Point statistics at 458N, 908W showing (top left) the mean GHCN surface temperatures for each week of JAS 1999 (x axis, i.e.,

from 7 Jul to 29 Sep), terciles (low and high in blue and red, respectively) and (second row, left) corresponding GHCN weekly tercile

probabilities for above normal (A), normal (N), and below normal (B). Forcasted weekly tercile probabilities are shown for (center)

ECMWF and (right) the multimodel ensemble (MME) of ECMWF, NCEP, and CMA hindcasts, which are pooled together with equal

weighting. Mean RPS is indicated in parentheses for each forecasts.
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(Fan and van den Dool 2004, 2008) daily surface temper-

ature estimates available from 1948 to present on a 0.58
grid, are averaged onto the common 1.58 grid of forecasts

archived in the S2S database and used as observational

data to calibrate and verify the reforecasts over 1999–2010.

b. Extended logistic regression model

Themethodology is similar to ELR employed inVigaud

et al. (2017a) from which the text is derived with minor

modifications as follows in this paragraph. Logistic re-

gression is well suited to probability forecasting, and an

additional explanatory variable g(q) can be used to pro-

duce the probability p of nonexceedance of the quantile q:

ln

�
p

12p

�
5 f x

ens

� �
1 g(q) , (1)

where f 5 b0 1 b1xens and g5 b2q. Cumulative proba-

bilities computed from Eq. (1) for smaller predictand

thresholds cannot exceed those for larger thresholds

(Vigaud et al. 2017a), yielding logically consistent sets of

forecasts (Wilks and Hamill 2007; Wilks 2009). ELR is

computed for the 33rd and 67th temperature percentiles

to produce tercile probabilities (ELR forecasts).

Observed climatological weekly tercile categories de-

rived from GHCN weekly temperatures are defined based

on 3-week windows that include the forecast target week

and one week on either side, separately at each grid point

for each start in DJF (8 December–25 February Thursday

start dates) and JJA (2 June–25 August Thursday start

dates), and each lead (from weeks 1 to week 4) following a

leave-one year-out approach (i.e., using the 30 and

33 weeks from the remaining 10 and 11 years for DJF and

JJA starts, respectively). ELRparameters are estimated for

each model, grid point, start, and lead separately, using

all years except the one being forecast, to predict terciles

probabilities for the left-out year (validation set) that

are averaged across models with equal weights to

produce a MME of individual forecast probabilities

(MME forecasts).

c. Spatial pattern correction

The Laplacian operator D in spherical coordinates

l and f (longitude and latitude, respectively) is

Df 5
1

cos2f

›2f

›l2
1

1

cosf

›

›f

�
cosf

›f

›f

�
. (2)

The finite-difference approximation of D using a five-

point stencil is

(Df )
i,j
5

1

cos2f
i

 
f
i,j11

2 f
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dx
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FIG. 3. (left) Observed GHCN above- and below-normal temperature tercile probabilities for 7 Jul 1999 start, together with those

forecasted by ECMWF and the multimodel ensemble (MME) of ECMWF, NCEP and CMAmodels from ELR and L-ELR1–3 forecasts.

Mean Brier score averages over the whole continental domain are indicated in parentheses for each forecast.
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where

dx
i
[l

i
2 l

i21
and dy

i
[

2(f
i
2f

i21
)

cosf
i
1 cosf

i21

. (4)

For each grid point of the North American domain, the

matrix representation of Eq. (3) withDirichlet boundary

conditions is formed for the 15 3 15 grid point (e.g.,

22.58 3 22.58) box centered on that grid point. The size

FIG. 4. Reliability diagrams for all three categories (below normal, normal, and above normal) from ECMWF ELR forecasts, with

(a)–(c) DJF and (d)–(f) JJA starts, from week-1 to week-4 leads in different colors. Forecasted frequencies of issuance are shown as bins

centered under the respective tercile category diagram. Forecast probabilities are plotted from 0 to 1 on the same x axis and from 0% to

100%on the y axis, and only the bins with more than 1% of all forecasts are plotted in each category. Results are computed for grid points

of continental North America between 208 and 508N latitudes.
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of this box is consistent with meteorological synoptic

scales such as those of midlatitude depressions for in-

stance (thousands of kilometers), and well suited for

gridpoint computations over North America. Similar re-

sults are obtained using slightly bigger or smaller boxes

(not shown). The eigenvectors of this 2253 225matrix are

then computed. These differ from those in DelSole and

Tippett (2015) since they are computed in subdomains

centered on the grid point being predicted, and they satisfy

an explicit Dirichlet boundary condition.

For each model, grid point, start, and lead, forecasts

are next projected with area weighting as in DelSole

FIG. 5. As in Fig. 4, but for the multimodel ensemble (MME) of ECMWF, NCEP, and CMAELR forecasts with starts in (a)–(c) DJF and

(d)–(f) JJA.
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and Tippett (2015) onto the first three Laplacian

eigenfunctions shown in Fig. 1. The first Laplacian

eigenfunction represents a spatial average, while the

second and third correspond to meridional and zonal

gradients, respectively. The resulting amplitudes are

then used as new predictors (Lap) in the ELR model,

such that Eq. (1) reads:

ln

�
p

12 p

�
5 f (Lap)1 g(q) , (5)

where f 5 b0 1�n

i51biLapi and g5 bn11q with Lapi cor-

responding to the projection of the ensemble mean tem-

perature on the ith Laplacian eigenvector. ELR models

based on n eigenvectors to produce tercile probabilities

will be referred to as L-ELRn forecasts, for n 5 1–3.

d. Regression model setup

Weekly terciles are first defined under cross valida-

tion, as shown in Fig. 2 (left column) for GHCN ob-

servations in JAS 1999 at a grid point (458N, 908W).

For each model, regression parameters are fitted sepa-

rately at each grid point, lead and calendar start date to

form weekly temperature tercile forecasts, as shown for

week 1 from ECMWF weekly starts in Fig. 2 (middle

column). ECMWF category forecasts display highest

weekly probabilities consistent with observed terciles

and are more skillful than those from NCEP and CMA

(not shown). Similarly to Vigaud et al. (2017a), the three

forecasts are averaged with equal weights to produce

MME forecasts shown in Fig. 2 (right column). MME

has the same or slightly lower RPS values, indicating a

moderate increase in skill.

Probability maps from forecasts initialized 7July 1999

(Fig. 3) display highest probabilities consistent with

GHCN, MME forecasts being more skillful than ECMWF

with comparable skill levels for ELR and L-ELR forecasts.

e. Skill metrics and significance testing

Reliability diagrams are computed by pooling all land

grid points over continental North America between 208

FIG. 6. Ranked probability skill scores (RPSS) for ECMWF, NCEP, and CMA temperature tercile ELR forecasts as well as their

multimodel ensemble (MME) for DJF starts (rows) and different columns leads from 1 to 4 weeks (columns). Mean RPSS is indicated in

parentheses for each forecast.
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and 508N to evaluate the reliability, but also resolution

as well as sharpness (Wilks 1995; Hamill 1997), of ELR

and L-ELR tercile category temperature forecasts.

Spatial information is provided by maps of ranked

probability skill scores (RPSSs; Epstein 1969; Murphy

1969, 1971;Weigel et al. 2007) that quantify the extent to

which calibrated predictions are improved in compari-

son to climatological frequencies. RPSS is one of the

most commonly used strictly proper skill scores (Daan

1985; Wilks 1995; Weigel et al. 2007), and its values tend

to be small; a reliable deterministic forecast with cor-

relation rwill have aRPSS of approximately 12
ffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
[i.e., a RPSS value of 0.1 corresponds to a correlation

near 0.44; Tippett et al. (2010)].

Monte Carlo simulations based on large numbers of

random forecasts samples (i.e., 100 000) drawn from all

forecasts with DJF and JJA starts are used separately to

assess the significant area averages RPSS during specific

ENSOconditions andMJOphases, which are, respectively,

compared to the 90th percentile RPSS derived from all

winter and summer starts. Monte Carlo simulations are

also used to assess the significance of the correlations of

area averages of weekly MMERPSSs with the observed

Niño-3.4 index (Barnston et al. 1997) and real-time mul-

tivariate MJO (RMM) indices (Wheeler and Hendon

2004), and of these indices with observed weekly rainfall.

3. Results

a. Baseline ELR weekly forecasts

Reliability diagrams for weekly ECMWF ELR fore-

casts withDJF and JJA starts (Fig. 4) show good reliability

and resolution for week 1 in both seasons, as indicated by

the blue lines near the diagonal and away from the 0.33

horizontal line (not plotted), respectively. Histograms of

forecast probabilities spread across all bins in week 1 and

indicate high sharpness, while forecast frequencies are

clustered toward equal odds as lead increases. From week

2, reliability and resolution drop, with more skill in winter

than summer. NCEP and CMA forecasts exhibit similar

results but are overall less skillful (not shown).

Greater slopes for the MME (Fig. 5) reflect under-

confidence and lack of resolution at most leads other

FIG. 7. As in Fig. 6, but for starts during the JJA season.
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than lead 4, with high sharpness but lower than for

ECMWF at all leads. Skill also decreases with in-

creasing leads, week-4 MME forecasts showing only

small deviations from equal odds, and from winter

to summer.

Positive RPSS values for week-1 forecasts from indi-

vidual models and their MME starting in DJF (Fig. 6)

are maximum east of 1008W, where largest RPSS re-

mains with half themagnitude in week 2, when ECMWF

is the most skillful model and CMA exhibits lowest skill.

FIG. 8. As in Fig. 4, but for (a)–(c) ECMWF and the (d)–(f) multimodel ensemble (MME) of ECMWF, NCEP, and CMA L-ELR1

forecasts with DJF starts.
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Near-zero or negative values are found everywhere at

higher leads, except for ECMWF in week 3 that is still

skillful over the eastern United States, and for the

southern U.S.–Gulf of Mexico (GoM) regions where

skill holds in ECMWF and CMA. Multimodel combi-

nation does not result in marked RPSS increase for

week-1 to week-3 forecasts compared to themost skillful

ECMWF model. In week 4, however, multimodel en-

sembling damps negative skill values in individual

forecasts and reflects maximum RPSS values for

ECMWF and CMA forecasts over the southern United

States–GoM, where skill is highest. Forecast skill is

higher in winter than summer (Fig. 7), agreeing with

Figs. 4 and 5. For JJA starts, skill levels in week 1 are

comparable across models and drop from week 2 with

near-zero or negative RPSS values prevailing fromweek

3, except over the northeast United States in ECMWF,

NCEP, and the MME showing also maximum RPSS

over Mexico and the GoM.

Over North America, ECMWF generally produces

the most reliable and skillful temperature tercile fore-

casts of all three EPSs fromweek-1 to week-4 leads. The

relatively poor performance of NCEP and CMAmodels

past week 2 translates into limited or no skill improve-

ment from multimodel ensembling for both winter and

summer starts. Including more models available from

both the S2S and SubX (Pegion et al. 2019) databases

alongside differential weighting schemes could poten-

tially help improving skill, but this needs to be tested in

further studies.

b. Skill improvements with spatial pattern correction

Reliability diagrams for ECMWF and MME L-ELR1

forecasts, using one Laplacian eigenfunction (e.g., the

spatial average of ensemble mean temperature in Fig. 1)

as predictor instead of the gridpoint mean temperature,

exhibit comparable reliability for DJF starts in Fig. 8

than those from ELR (Figs. 4 and 5). Figure 9 shows

spatial averages over North America between 208 and
508N latitudes of the percentages of ELR forecasts dif-

ferent from climatology in Figs. 4 and 5, which is an in-

dication of sharpness, alongside those from L-ELR1

(Fig. 8) to L-ELR3 (not shown) forecasts. Sharpness

decreases with lead for all forecasts and is comparable

between L-ELR1 and ELR at week 1, but increases for

L-ELR1 from weeks 2 and 3 in DJF and JJA, re-

spectively. Noteworthy, L-ELR2–3 forecasts are in-

creasingly sharper than ELR and L-ELR1 with

increasing leads, reflecting overconfidence.

RPSS for L-ELR1–3 forecasts with DJF and JJA

starts (Figs. 10–13) have comparable structures to

those from ELR with less negative values for the MME

than ECMWF. Overall, skill improvement by multi-

model ensembling is limited compared to the best

FIG. 9. Percentages of forecasts outside for the fourth bin (0.33) for week-1–4 forecasts from (left) ECMWFand (right) theMME for the

above and below-normal categories averaged over continental North America between 208 and 508N latitudes, for temperature tercile

forecasts with (top) DJF and (bottom) JJA starts.
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ECMWF model, as noted for baseline ELR forecasts.

Higher RPSS for ECMWF andMMEL-ELR1 forecasts

compared to ELR from week 3 translates into highest

skill over North America (Fig. 14) that contrasts with

comparable skill levels at shorter leads. RPSS values

drop when adding more predictors in L-ELR2–3 and, to-

gether with increased sharpness (Fig. 9), suggest over-

confidence and reduced reliability. This overconfidence

FIG. 10. RPSS for ECMWFL-ELR1–3 temperature tercile forecasts for DJF starts (rows) and different leads from 1 to 4 weeks (columns).

Mean RPSS is indicated in parentheses for each forecast.

FIG. 11. As in Fig. 10, but for the multimodel ensemble (MME) of ECMWF, NCEP, and CMA.
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can be related to the sensitivity of regression methods to

sample variability, which increases with the number of

coefficients being estimated and can be reduced by in-

creasing sample size (Tippett et al. 2014). The short

length of reforecasts used for training at each start

date (three reforecasts over 10 and 11 years for DJF

and JJA starts, respectively) does not allow to signif-

icantly satisfy the rule of thumb of having approximately

FIG. 12. As in Fig. 10, but for starts during the JJA season.

FIG. 13. As in Fig. 12, but for the multimodel ensemble (MME) of ECMWF, NCEP, and CMA.

1800 WEATHER AND FORECAST ING VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:07 PM UTC



10 samples per explanatory variables, beyond two

predictors.

c. Skill relationships to ENSO and the MJO

Significant correlations between weekly GHCN tem-

perature estimates and the Niño-3.4 (Barnston et al.

1997) and RMM indices (Wheeler and Hendon 2004) in

Fig. 15 (top panels) suggest forecast skill relationships

to both large-scale signals, particularly in winter. This

is further confirmed by resemblances between both

Niño-3.4 and RMM1 correlations and the spatial cor-

relation patterns of the first principal components (PCs)

obtained by applying a principal component analysis

(PCA) to weekly MME RPSS values (i.e., the mean is

not removed) in Fig. 15 bottom panels. In winter, these

PCs are highly correlated to mean RPSS (above 0.9) and

account for a significant part of total variance from

week-1 to week-4 leads (near and above 30%). Maxi-

mum PC1 loadings over the east United States at all

leads coincide with anticorrelations between weekly

temperatures and Niño-3.4, alongside similarities to

RMM1 positive correlation pattern, that are consistent

with Table 2. In summer, PC1 is also highly correlated to

mean RPSS but explains lower amount of variance be-

yond week 1 (below 15%) and its maximum loadings

correspond less well with pattern correlations of weekly

temperatures, except over the southwest and southeast

United States, where positive correlations are also

typical of Niño-3.4.
Weekly MME RPSS values and above-normal fore-

cast probabilities averaged over North America be-

tween 208 and 508N, and stratified by ENSO conditions

(El Niño and La Niña when Niño-3.4 is greater and

lower than 0.5, respectively, and neutral conditions

otherwise) and distinct MJO phases, are shown for

forecasts with DJF starts in Fig. 16. The small reforecast

sample contains no strong El Niño event and no signif-

icant skill relationship is found with ENSO phases in

winter, except for La Niña phases in week 3 and 4, but

skill remains low. This is reflected by barely significant

above-normal probabilities at both leads, that can be

related to maximum skill for DJF starts over the

southeast United States (Figs. 6, 10, and 15), where

warmer conditions generally prevail in winter for cold

FIG. 14.Mean weekly RPSS averaged over continental NorthAmerica between 208 and 508N latitudes, for week-

1–4 ELR and L-ELR1–3 temperature tercile forecasts from (left) ECMWF and (right) the multimodel ensemble

(MME) with (top) DJF and (bottom) JJA starts.
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ENSO phases (Smith and Sardeshmukh 2000), con-

sistent with Fig. 15 and Table 2, also suggesting

that above-normal probabilities below 33% could

be related to cooling over the Gulf coast through

El Niño-induced jet modulations (Ropelewski and

Halpert 1986).

Higher mean RPSS across MJO phases than for

ENSO might indicate more predictability from the

MJO. Winter skill is increased for MJO phase 3 up to

week 3 and phase 6 up to week 2 (Fig. 16), when con-

vection is enhanced over the Indian Ocean and western

Pacific, respectively. This is consistent with North

FIG. 15. The upper panels show spatial correlation patterns of (top) DJF and (bottom) JJA GHCN weekly temperatures and (left)

observed weekly Niño-3.4 index (Barnston et al. 1997) and (center),(right) RMM indices (Wheeler and Hendon 2004). The lower panels

show weeklyMME leading RPSS PC1 from ELR forecasts with starts in (top) DJF and (bottom) JJA. Only correlations significant at the

0.05 level using Monte Carlo simulations are plotted. The fraction of total variance explained by each PC is indicated in the different

panels (%) as well as their correlations to spatially averaged RPSSs.

TABLE 2. Correlations between weeklyMMERPSSs averaged over North America between 208 and 508N inDJF and JJA, as well as its

leading principal components (PC1, in parentheses), and the observed Niño-3.4 index (second column), MJO measured by the RMM1

(third column), and RMM2 (fourth column) indices of Wheeler and Hendon (2004), and their best linear combination (fifth column).

Scores significant at the 0.05 level of significance using Monte Carlo simulations are indicated with *.

Mean (PC1) RPSS Niño-3.4 RMM1 RMM2 MJO

DJF week 1 20.13 (20.17) 0.16* (0.21*) 0.02 (20.07) 20.15 (20.19*)

DJF week 2 20.08 (20.11) 0.15 (0.17*) 20.16 (20.22*) 20.17 (20.24*)

DJF week 3 20.09 (20.16) 20.09 (20.07) 20.17 (20.23) 20.19* (20.25*)

DJF week 4 20.20* (20.39*) 20.12 (20.06) 20.16* (20.14) 20.21* (20.16)

JJA week 1 0.24* (0.21*) 20.1 (20.13) 20.06 (20.03) 0.02 (20.09*)

JJA week 2 0.21* (0.17*) 0.02 (20.01) 0 (0.05) 0.02 (20.04)

JJA week 3 0.31* (0.27*) 20.12 (20.14) 0.01 (0.06) 0.12 (0.15)

JJA week 4 0.25* (0.22*) 20.04 (20.09) 20.09 (20.07) 0.1 (0.13)
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American temperatures relationship to MJO phases

characterized by strong dipolar anomalies in tropical

diabatic heating and convection (Lin and Brunet 2009;

Yao et al. 2011; Rodney et al. 2013) associated with

anomalous Rossby waves (Hoskins and Karoly 1981;

Karoly 1983; Hoskins and Ambrizzi 1993) favoring ex-

tratopical teleconnections (Lin et al. 2009, 2010; Lin and

Brunet 2018) and impacting winter temperatures with a

precursive signal up to 2-week lead around phases 3 and

6 (Lin and Brunet 2009; Yao et al. 2011). Highest RPSSs

for MJO phases 3 and 6 coincide with enhanced above-

normal forecast probabilities, consistent with positive

RMM1 correlations to east coast temperatures (Fig. 15)

and to RPSS (Table 2), which maximum RPSS and

above-normal probabilities in week 4 for phases 1–3

might be reminiscent of.

Skill levels are lower in summer across both ENSO

and MJO phases (Fig. 17) compared to winter. The

highest RPSS values occur during El Niño at all leads

compared to neutral and La Niña phases, and are con-

sistent with Table 2. Maximum positive correlations

between Niño-3.4 and weekly temperatures over the

southeast and southwest United States with parts of

positive PC1 loadings over these regions (Fig. 15)

suggest enhanced predictability there during warm

phases of ENSO, but forecast probabilities close to cli-

matological odds reflect weak relationships. Sustained

wave teleconnections could explain maximum skill at

most leads for MJO phase 3, and in week 1 for phase 8,

while skill is near zero or negative otherwise after week

2, and above-normal forecast probabilities are barely

significant beyond week 1.

4. Discussion and conclusions

The skill of S2S forecasts from ECMWF, NCEP, and

CMA week 1–4 leads has been investigated by applying

ELR to produce weekly tercile probabilities over the

common 1999–2010 period. While baseline forecasts use

the gridpoint ensemble mean as predictor, spatial cor-

rection is next implemented through the decomposition

of the ensemble mean temperature neighboring each

grid point, using locally defined Laplacian eigenfunctions

(Fig. 1). Individual model probabilities are averaged to

form themultimodel ensemble (MME) forecasts (Figs. 2

and 3). OverNorthAmerica, weekly temperature tercile

forecasts based on the gridpoint ensemble mean are

characterized by high sharpness and decreasing skill

FIG. 16. (top) Mean weekly RPSS averaged over continental North America between 208 and 508N for week 1–4 MME ELR and

L-ELR1–3 temperature tercile forecasts with DJF starts during observed phases of the Niño-3.4 index (Barnston et al. 1997) vs corre-

sponding above-normal probabilities, where El Niño, neutral ENSO, and La Niña phases are indicated by 1, o, and x symbols, re-

spectively. Dashed lines correspond to a 0.1 level of significance using Monte Carlo simulations. (bottom) As in the top panels, but for

MJO phases measured by RMM indices (Wheeler and Hendon 2004).
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with lead times for starts in DJF and JJA, when re-

liability and resolution drop after weeks 1 and 2, re-

spectively (Figs. 4 and 5), with more skillful predictions

in winter than summer (Figs. 6 and 7). When using the

first Laplacian eigenfunction (i.e., the spatial average of

ensemble mean temperature) instead of the gridpoint

ensemble mean, forecasts are characterized by compa-

rable sharpness, resolution and reliability at weeks 1 and

2 (Figs. 8 and 9), but skill levels are slightly increased

from week 3 (Figs. 10–14). Skill decreases when in-

cluding more Laplacian eigenfunctions as additional

explanatory variables, which can be related to the sen-

sitivity of regressions to sample variability, suggesting

that improvements are limited by the small size of re-

forecasts used to train the ELR model. Overall, there is

no substantial skill improvement by multimodel en-

sembling compared to the ECMWF model for all fore-

casts and both seasons, even when spatial pattern

corrections are applied. Including more models and

multimodel ensembling approaches with unequal weight-

ing could potentially help to improve skill, and this needs

to be further studied.

Weekly temperature and skill relationships to ENSO

and the MJO (Figs. 15–17 and Table 2) suggest modu-

lations from both large-scale signals. Significant but

weak skill relationships are identified in winter with La

Niña at week-3 and week-4 leads (Fig. 16), potentially

reflecting warm conditions for cold ENSO phases over

the southeast United States, where skill is maximum in

DJF (Fig. 15) and contrasts with the cold bias in seasonal

model forecasts. Skill is increased for summer starts

during El Niño at all leads, but remains small (Fig. 17),

with associated forecasted probabilities close to climato-

logical odds. MJO modulates skill more significantly in

winter with the highest skill in both seasons up to week 3

coinciding with enhanced above-normal probabilities for

MJO phase 3, whenMJO-induced dipolar anomalies are

known to favor extratropical teleconnections and skill

could be potentially related to the predictability of

Rossby waves that influence North American tempera-

ture. Such opportunities for skillful predictions could be

exploited in future studies and translate into useful cli-

mate information for applications in the S2S time range.
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